Metamath Proof Explorer


Theorem fvun

Description: Value of the union of two functions when the domains are separate. (Contributed by FL, 7-Nov-2011)

Ref Expression
Assertion fvun FunFFunGdomFdomG=FGA=FAGA

Proof

Step Hyp Ref Expression
1 funun FunFFunGdomFdomG=FunFG
2 funfv FunFGFGA=FGA
3 1 2 syl FunFFunGdomFdomG=FGA=FGA
4 imaundir FGA=FAGA
5 4 a1i FunFFunGdomFdomG=FGA=FAGA
6 5 unieqd FunFFunGdomFdomG=FGA=FAGA
7 uniun FAGA=FAGA
8 funfv FunFFA=FA
9 8 eqcomd FunFFA=FA
10 funfv FunGGA=GA
11 10 eqcomd FunGGA=GA
12 9 11 anim12i FunFFunGFA=FAGA=GA
13 12 adantr FunFFunGdomFdomG=FA=FAGA=GA
14 uneq12 FA=FAGA=GAFAGA=FAGA
15 13 14 syl FunFFunGdomFdomG=FAGA=FAGA
16 7 15 eqtrid FunFFunGdomFdomG=FAGA=FAGA
17 3 6 16 3eqtrd FunFFunGdomFdomG=FGA=FAGA