Metamath Proof Explorer


Theorem fxpgaeq

Description: A fixed point X is invariant under group action A (Contributed by Thierry Arnoux, 18-Nov-2025)

Ref Expression
Hypotheses fxpgaval.s U = Base G
fxpgaval.a φ A G GrpAct C
fxpgaeq.x No typesetting found for |- ( ph -> X e. ( C FixPts A ) ) with typecode |-
fxpgaeq.p φ P U
Assertion fxpgaeq φ P A X = X

Proof

Step Hyp Ref Expression
1 fxpgaval.s U = Base G
2 fxpgaval.a φ A G GrpAct C
3 fxpgaeq.x Could not format ( ph -> X e. ( C FixPts A ) ) : No typesetting found for |- ( ph -> X e. ( C FixPts A ) ) with typecode |-
4 fxpgaeq.p φ P U
5 oveq1 p = P p A X = P A X
6 5 eqeq1d p = P p A X = X P A X = X
7 1 2 fxpgaval Could not format ( ph -> ( C FixPts A ) = { x e. C | A. p e. U ( p A x ) = x } ) : No typesetting found for |- ( ph -> ( C FixPts A ) = { x e. C | A. p e. U ( p A x ) = x } ) with typecode |-
8 3 7 eleqtrd φ X x C | p U p A x = x
9 oveq2 x = X p A x = p A X
10 id x = X x = X
11 9 10 eqeq12d x = X p A x = x p A X = X
12 11 ralbidv x = X p U p A x = x p U p A X = X
13 12 elrab X x C | p U p A x = x X C p U p A X = X
14 8 13 sylib φ X C p U p A X = X
15 14 simprd φ p U p A X = X
16 6 15 4 rspcdva φ P A X = X