Metamath Proof Explorer


Theorem fznn0sub2

Description: Subtraction closure for a member of a finite set of sequential nonnegative integers. (Contributed by NM, 26-Sep-2005) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fznn0sub2 K0NNK0N

Proof

Step Hyp Ref Expression
1 elfzle1 K0N0K
2 elfzel2 K0NN
3 elfzelz K0NK
4 zre NN
5 zre KK
6 subge02 NK0KNKN
7 4 5 6 syl2an NK0KNKN
8 2 3 7 syl2anc K0N0KNKN
9 1 8 mpbid K0NNKN
10 fznn0sub K0NNK0
11 nn0uz 0=0
12 10 11 eleqtrdi K0NNK0
13 elfz5 NK0NNK0NNKN
14 12 2 13 syl2anc K0NNK0NNKN
15 9 14 mpbird K0NNK0N