Metamath Proof Explorer


Theorem fzoshftral

Description: Shift the scanning order inside of a universal quantification restricted to a half-open integer range, analogous to fzshftral . (Contributed by Alexander van der Vekens, 23-Sep-2018)

Ref Expression
Assertion fzoshftral MNKjM..^NφkM+K..^N+K[˙kK/j]˙φ

Proof

Step Hyp Ref Expression
1 fzoval NM..^N=MN1
2 1 3ad2ant2 MNKM..^N=MN1
3 2 raleqdv MNKjM..^NφjMN1φ
4 peano2zm NN1
5 fzshftral MN1KjMN1φkM+KN-1+K[˙kK/j]˙φ
6 4 5 syl3an2 MNKjMN1φkM+KN-1+K[˙kK/j]˙φ
7 zaddcl NKN+K
8 7 3adant1 MNKN+K
9 fzoval N+KM+K..^N+K=M+KN+K-1
10 8 9 syl MNKM+K..^N+K=M+KN+K-1
11 zcn NN
12 11 adantr NKN
13 zcn KK
14 13 adantl NKK
15 1cnd NK1
16 12 14 15 addsubd NKN+K-1=N-1+K
17 16 3adant1 MNKN+K-1=N-1+K
18 17 oveq2d MNKM+KN+K-1=M+KN-1+K
19 10 18 eqtr2d MNKM+KN-1+K=M+K..^N+K
20 19 raleqdv MNKkM+KN-1+K[˙kK/j]˙φkM+K..^N+K[˙kK/j]˙φ
21 3 6 20 3bitrd MNKjM..^NφkM+K..^N+K[˙kK/j]˙φ