Metamath Proof Explorer


Theorem fzshftral

Description: Shift the scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 27-Nov-2005)

Ref Expression
Assertion fzshftral MNKjMNφkM+KN+K[˙kK/j]˙φ

Proof

Step Hyp Ref Expression
1 0z 0
2 fzrevral MN0jMNφx0N0M[˙0x/j]˙φ
3 1 2 mp3an3 MNjMNφx0N0M[˙0x/j]˙φ
4 3 3adant3 MNKjMNφx0N0M[˙0x/j]˙φ
5 zsubcl 0N0N
6 1 5 mpan N0N
7 zsubcl 0M0M
8 1 7 mpan M0M
9 id KK
10 fzrevral 0N0MKx0N0M[˙0x/j]˙φkK0MK0N[˙Kk/x]˙[˙0x/j]˙φ
11 6 8 9 10 syl3an NMKx0N0M[˙0x/j]˙φkK0MK0N[˙Kk/x]˙[˙0x/j]˙φ
12 11 3com12 MNKx0N0M[˙0x/j]˙φkK0MK0N[˙Kk/x]˙[˙0x/j]˙φ
13 ovex KkV
14 oveq2 x=Kk0x=0Kk
15 14 sbcco3gw KkV[˙Kk/x]˙[˙0x/j]˙φ[˙0Kk/j]˙φ
16 13 15 ax-mp [˙Kk/x]˙[˙0x/j]˙φ[˙0Kk/j]˙φ
17 16 ralbii kK0MK0N[˙Kk/x]˙[˙0x/j]˙φkK0MK0N[˙0Kk/j]˙φ
18 zcn MM
19 zcn NN
20 zcn KK
21 df-neg M=0M
22 21 oveq2i K- M=K0M
23 subneg KMK- M=K+M
24 addcom KMK+M=M+K
25 23 24 eqtrd KMK- M=M+K
26 22 25 eqtr3id KMK0M=M+K
27 26 3adant3 KMNK0M=M+K
28 df-neg N=0N
29 28 oveq2i K- N=K0N
30 subneg KNK- N=K+N
31 addcom KNK+N=N+K
32 30 31 eqtrd KNK- N=N+K
33 29 32 eqtr3id KNK0N=N+K
34 33 3adant2 KMNK0N=N+K
35 27 34 oveq12d KMNK0MK0N=M+KN+K
36 35 3coml MNKK0MK0N=M+KN+K
37 18 19 20 36 syl3an MNKK0MK0N=M+KN+K
38 37 raleqdv MNKkK0MK0N[˙0Kk/j]˙φkM+KN+K[˙0Kk/j]˙φ
39 elfzelz kM+KN+Kk
40 39 zcnd kM+KN+Kk
41 df-neg Kk=0Kk
42 negsubdi2 KkKk=kK
43 41 42 eqtr3id Kk0Kk=kK
44 20 40 43 syl2an KkM+KN+K0Kk=kK
45 44 sbceq1d KkM+KN+K[˙0Kk/j]˙φ[˙kK/j]˙φ
46 45 ralbidva KkM+KN+K[˙0Kk/j]˙φkM+KN+K[˙kK/j]˙φ
47 46 3ad2ant3 MNKkM+KN+K[˙0Kk/j]˙φkM+KN+K[˙kK/j]˙φ
48 38 47 bitrd MNKkK0MK0N[˙0Kk/j]˙φkM+KN+K[˙kK/j]˙φ
49 17 48 bitrid MNKkK0MK0N[˙Kk/x]˙[˙0x/j]˙φkM+KN+K[˙kK/j]˙φ
50 4 12 49 3bitrd MNKjMNφkM+KN+K[˙kK/j]˙φ