| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0z |
|
| 2 |
|
fzrevral |
|
| 3 |
1 2
|
mp3an3 |
|
| 4 |
3
|
3adant3 |
|
| 5 |
|
zsubcl |
|
| 6 |
1 5
|
mpan |
|
| 7 |
|
zsubcl |
|
| 8 |
1 7
|
mpan |
|
| 9 |
|
id |
|
| 10 |
|
fzrevral |
|
| 11 |
6 8 9 10
|
syl3an |
|
| 12 |
11
|
3com12 |
|
| 13 |
|
ovex |
|
| 14 |
|
oveq2 |
|
| 15 |
14
|
sbcco3gw |
|
| 16 |
13 15
|
ax-mp |
|
| 17 |
16
|
ralbii |
|
| 18 |
|
zcn |
|
| 19 |
|
zcn |
|
| 20 |
|
zcn |
|
| 21 |
|
df-neg |
|
| 22 |
21
|
oveq2i |
|
| 23 |
|
subneg |
|
| 24 |
|
addcom |
|
| 25 |
23 24
|
eqtrd |
|
| 26 |
22 25
|
eqtr3id |
|
| 27 |
26
|
3adant3 |
|
| 28 |
|
df-neg |
|
| 29 |
28
|
oveq2i |
|
| 30 |
|
subneg |
|
| 31 |
|
addcom |
|
| 32 |
30 31
|
eqtrd |
|
| 33 |
29 32
|
eqtr3id |
|
| 34 |
33
|
3adant2 |
|
| 35 |
27 34
|
oveq12d |
|
| 36 |
35
|
3coml |
|
| 37 |
18 19 20 36
|
syl3an |
|
| 38 |
37
|
raleqdv |
|
| 39 |
|
elfzelz |
|
| 40 |
39
|
zcnd |
|
| 41 |
|
df-neg |
|
| 42 |
|
negsubdi2 |
|
| 43 |
41 42
|
eqtr3id |
|
| 44 |
20 40 43
|
syl2an |
|
| 45 |
44
|
sbceq1d |
|
| 46 |
45
|
ralbidva |
|
| 47 |
46
|
3ad2ant3 |
|
| 48 |
38 47
|
bitrd |
|
| 49 |
17 48
|
bitrid |
|
| 50 |
4 12 49
|
3bitrd |
|