Metamath Proof Explorer


Theorem gbowpos

Description: Any weak odd Goldbach number is positive. (Contributed by AV, 20-Jul-2020)

Ref Expression
Assertion gbowpos ZGoldbachOddWZ

Proof

Step Hyp Ref Expression
1 isgbow ZGoldbachOddWZOddpqrZ=p+q+r
2 prmnn pp
3 prmnn qq
4 2 3 anim12i pqpq
5 4 adantr pqrpq
6 nnaddcl pqp+q
7 5 6 syl pqrp+q
8 prmnn rr
9 8 adantl pqrr
10 7 9 nnaddcld pqrp+q+r
11 eleq1 Z=p+q+rZp+q+r
12 10 11 syl5ibrcom pqrZ=p+q+rZ
13 12 rexlimdva pqrZ=p+q+rZ
14 13 a1i ZOddpqrZ=p+q+rZ
15 14 rexlimdvv ZOddpqrZ=p+q+rZ
16 15 imp ZOddpqrZ=p+q+rZ
17 1 16 sylbi ZGoldbachOddWZ