Metamath Proof Explorer


Theorem geoser

Description: The value of the finite geometric series 1 + A ^ 1 + A ^ 2 + ... + A ^ ( N - 1 ) . This is Metamath 100 proof #66. (Contributed by NM, 12-May-2006) (Proof shortened by Mario Carneiro, 15-Jun-2014)

Ref Expression
Hypotheses geoser.1 φA
geoser.2 φA1
geoser.3 φN0
Assertion geoser φk=0N1Ak=1AN1A

Proof

Step Hyp Ref Expression
1 geoser.1 φA
2 geoser.2 φA1
3 geoser.3 φN0
4 0nn0 00
5 4 a1i φ00
6 nn0uz 0=0
7 3 6 eleqtrdi φN0
8 1 2 5 7 geoserg φk0..^NAk=A0AN1A
9 3 nn0zd φN
10 fzoval N0..^N=0N1
11 9 10 syl φ0..^N=0N1
12 11 sumeq1d φk0..^NAk=k=0N1Ak
13 1 exp0d φA0=1
14 13 oveq1d φA0AN=1AN
15 14 oveq1d φA0AN1A=1AN1A
16 8 12 15 3eqtr3d φk=0N1Ak=1AN1A