Description: The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 23-Apr-2016) (Proof shortened by AV, 26-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gexval.1 | |
|
gexval.2 | |
||
gexval.3 | |
||
gexval.4 | |
||
gexval.i | |
||
Assertion | gexlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gexval.1 | |
|
2 | gexval.2 | |
|
3 | gexval.3 | |
|
4 | gexval.4 | |
|
5 | gexval.i | |
|
6 | 1 2 3 4 5 | gexval | |
7 | eqeq2 | |
|
8 | 7 | imbi1d | |
9 | eqeq2 | |
|
10 | 9 | imbi1d | |
11 | orc | |
|
12 | 11 | expcom | |
13 | 12 | adantl | |
14 | ssrab2 | |
|
15 | nnuz | |
|
16 | 15 | eqcomi | |
17 | 14 5 16 | 3sstr4i | |
18 | neqne | |
|
19 | 18 | adantl | |
20 | infssuzcl | |
|
21 | 17 19 20 | sylancr | |
22 | eleq1a | |
|
23 | 21 22 | syl | |
24 | olc | |
|
25 | 23 24 | syl6 | |
26 | 8 10 13 25 | ifbothda | |
27 | 6 26 | mpd | |