Database
BASIC ALGEBRAIC STRUCTURES
Groups
Elementary theory of group homomorphisms
ghmf
Next ⟩
ghmlin
Metamath Proof Explorer
Ascii
Unicode
Theorem
ghmf
Description:
A group homomorphism is a function.
(Contributed by
Stefan O'Rear
, 31-Dec-2014)
Ref
Expression
Hypotheses
ghmf.x
⊢
X
=
Base
S
ghmf.y
⊢
Y
=
Base
T
Assertion
ghmf
⊢
F
∈
S
GrpHom
T
→
F
:
X
⟶
Y
Proof
Step
Hyp
Ref
Expression
1
ghmf.x
⊢
X
=
Base
S
2
ghmf.y
⊢
Y
=
Base
T
3
eqid
⊢
+
S
=
+
S
4
eqid
⊢
+
T
=
+
T
5
1
2
3
4
isghm
⊢
F
∈
S
GrpHom
T
↔
S
∈
Grp
∧
T
∈
Grp
∧
F
:
X
⟶
Y
∧
∀
y
∈
X
∀
x
∈
X
F
⁡
y
+
S
x
=
F
⁡
y
+
T
F
⁡
x
6
5
simprbi
⊢
F
∈
S
GrpHom
T
→
F
:
X
⟶
Y
∧
∀
y
∈
X
∀
x
∈
X
F
⁡
y
+
S
x
=
F
⁡
y
+
T
F
⁡
x
7
6
simpld
⊢
F
∈
S
GrpHom
T
→
F
:
X
⟶
Y