Metamath Proof Explorer


Theorem gicer

Description: Isomorphism is an equivalence relation on groups. (Contributed by Mario Carneiro, 21-Apr-2016) (Proof shortened by AV, 1-May-2021)

Ref Expression
Assertion gicer 𝑔ErGrp

Proof

Step Hyp Ref Expression
1 df-gic 𝑔=GrpIso-1V1𝑜
2 cnvimass GrpIso-1V1𝑜domGrpIso
3 gimfn GrpIsoFnGrp×Grp
4 3 fndmi domGrpIso=Grp×Grp
5 2 4 sseqtri GrpIso-1V1𝑜Grp×Grp
6 1 5 eqsstri 𝑔Grp×Grp
7 relxp RelGrp×Grp
8 relss 𝑔Grp×GrpRelGrp×GrpRel𝑔
9 6 7 8 mp2 Rel𝑔
10 gicsym x𝑔yy𝑔x
11 gictr x𝑔yy𝑔zx𝑔z
12 gicref xGrpx𝑔x
13 giclcl x𝑔xxGrp
14 12 13 impbii xGrpx𝑔x
15 9 10 11 14 iseri 𝑔ErGrp