Description: Isomorphism is an equivalence relation on groups. (Contributed by Mario Carneiro, 21-Apr-2016) (Proof shortened by AV, 1-May-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | gicer | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-gic | |
|
2 | cnvimass | |
|
3 | gimfn | |
|
4 | 3 | fndmi | |
5 | 2 4 | sseqtri | |
6 | 1 5 | eqsstri | |
7 | relxp | |
|
8 | relss | |
|
9 | 6 7 8 | mp2 | |
10 | gicsym | |
|
11 | gictr | |
|
12 | gicref | |
|
13 | giclcl | |
|
14 | 12 13 | impbii | |
15 | 9 10 11 14 | iseri | |