Metamath Proof Explorer


Theorem glbprop

Description: Properties of greatest lower bound of a poset. (Contributed by NM, 7-Sep-2018)

Ref Expression
Hypotheses glbprop.b B=BaseK
glbprop.l ˙=K
glbprop.u U=glbK
glbprop.k φKV
glbprop.s φSdomU
Assertion glbprop φySUS˙yzBySz˙yz˙US

Proof

Step Hyp Ref Expression
1 glbprop.b B=BaseK
2 glbprop.l ˙=K
3 glbprop.u U=glbK
4 glbprop.k φKV
5 glbprop.s φSdomU
6 biid ySx˙yzBySz˙yz˙xySx˙yzBySz˙yz˙x
7 1 2 3 4 5 glbelss φSB
8 1 2 3 6 4 7 glbval φUS=ιxB|ySx˙yzBySz˙yz˙x
9 8 eqcomd φιxB|ySx˙yzBySz˙yz˙x=US
10 1 3 4 5 glbcl φUSB
11 1 2 3 6 4 5 glbeu φ∃!xBySx˙yzBySz˙yz˙x
12 breq1 x=USx˙yUS˙y
13 12 ralbidv x=USySx˙yySUS˙y
14 breq2 x=USz˙xz˙US
15 14 imbi2d x=USySz˙yz˙xySz˙yz˙US
16 15 ralbidv x=USzBySz˙yz˙xzBySz˙yz˙US
17 13 16 anbi12d x=USySx˙yzBySz˙yz˙xySUS˙yzBySz˙yz˙US
18 17 riota2 USB∃!xBySx˙yzBySz˙yz˙xySUS˙yzBySz˙yz˙USιxB|ySx˙yzBySz˙yz˙x=US
19 10 11 18 syl2anc φySUS˙yzBySz˙yz˙USιxB|ySx˙yzBySz˙yz˙x=US
20 9 19 mpbird φySUS˙yzBySz˙yz˙US