Metamath Proof Explorer


Theorem gneispace0nelrn3

Description: A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a A=f|f:domf𝒫𝒫domfpdomfnfppns𝒫domfnssfp
Assertion gneispace0nelrn3 FA¬ranF

Proof

Step Hyp Ref Expression
1 gneispace.a A=f|f:domf𝒫𝒫domfpdomfnfppns𝒫domfnssfp
2 1 gneispacern FAranF𝒫𝒫domF
3 neldifsnd ranF𝒫𝒫domF¬𝒫𝒫domF
4 ssel ranF𝒫𝒫domFranF𝒫𝒫domF
5 3 4 mtod ranF𝒫𝒫domF¬ranF
6 2 5 syl FA¬ranF