Metamath Proof Explorer


Theorem gneispb

Description: Given a neighborhood N of P , each subset of the neighborhood space containing this neighborhood is also a neighborhood of P . Axiom B of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021)

Ref Expression
Hypothesis gneispace.x X = J
Assertion gneispb J Top P X N nei J P s 𝒫 X N s s nei J P

Proof

Step Hyp Ref Expression
1 gneispace.x X = J
2 3simpb J Top P X N nei J P J Top N nei J P
3 2 ad2antrr J Top P X N nei J P s 𝒫 X N s J Top N nei J P
4 simpr J Top P X N nei J P s 𝒫 X N s N s
5 simplr J Top P X N nei J P s 𝒫 X N s s 𝒫 X
6 5 elpwid J Top P X N nei J P s 𝒫 X N s s X
7 1 ssnei2 J Top N nei J P N s s X s nei J P
8 3 4 6 7 syl12anc J Top P X N nei J P s 𝒫 X N s s nei J P
9 8 exp31 J Top P X N nei J P s 𝒫 X N s s nei J P
10 9 ralrimiv J Top P X N nei J P s 𝒫 X N s s nei J P