Metamath Proof Explorer


Theorem gpgprismgrusgra

Description: The generalized Petersen graphs G(N,1), which are the N-prisms, are simple graphs. (Contributed by AV, 31-Oct-2025)

Ref Expression
Assertion gpgprismgrusgra Could not format assertion : No typesetting found for |- ( N e. ( ZZ>= ` 3 ) -> ( N gPetersenGr 1 ) e. USGraph ) with typecode |-

Proof

Step Hyp Ref Expression
1 1zzd N 3 1
2 eluzelre N 3 N
3 2re 2
4 3 a1i N 3 2
5 2ne0 2 0
6 5 a1i N 3 2 0
7 2 4 6 3jca N 3 N 2 2 0
8 redivcl N 2 2 0 N 2
9 7 8 syl N 3 N 2
10 9 ceilcld N 3 N 2
11 1red N 3 1
12 8 ceilcld N 2 2 0 N 2
13 7 12 syl N 3 N 2
14 13 zred N 3 N 2
15 1lt2 1 < 2
16 15 a1i N 3 1 < 2
17 2ltceilhalf N 3 2 N 2
18 11 4 14 16 17 ltletrd N 3 1 < N 2
19 fzolb 1 1 ..^ N 2 1 N 2 1 < N 2
20 1 10 18 19 syl3anbrc N 3 1 1 ..^ N 2
21 gpgusgra Could not format ( ( N e. ( ZZ>= ` 3 ) /\ 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr 1 ) e. USGraph ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr 1 ) e. USGraph ) with typecode |-
22 20 21 mpdan Could not format ( N e. ( ZZ>= ` 3 ) -> ( N gPetersenGr 1 ) e. USGraph ) : No typesetting found for |- ( N e. ( ZZ>= ` 3 ) -> ( N gPetersenGr 1 ) e. USGraph ) with typecode |-