Metamath Proof Explorer


Theorem gricuspgr

Description: The "is isomorphic to" relation for two simple pseudographs. This corresponds to the definition in Bollobas p. 3. (Contributed by AV, 1-Dec-2022) (Proof shortened by AV, 5-May-2025)

Ref Expression
Hypotheses gricushgr.v V = Vtx A
gricushgr.w W = Vtx B
gricushgr.e E = Edg A
gricushgr.k K = Edg B
Assertion gricuspgr A USHGraph B USHGraph A 𝑔𝑟 B f f : V 1-1 onto W a V b V a b E f a f b K

Proof

Step Hyp Ref Expression
1 gricushgr.v V = Vtx A
2 gricushgr.w W = Vtx B
3 gricushgr.e E = Edg A
4 gricushgr.k K = Edg B
5 brgric A 𝑔𝑟 B A GraphIso B
6 n0 A GraphIso B f f A GraphIso B
7 5 6 bitri A 𝑔𝑟 B f f A GraphIso B
8 7 a1i A USHGraph B USHGraph A 𝑔𝑟 B f f A GraphIso B
9 1 2 3 4 isuspgrim A USHGraph B USHGraph f A GraphIso B f : V 1-1 onto W a V b V a b E f a f b K
10 9 exbidv A USHGraph B USHGraph f f A GraphIso B f f : V 1-1 onto W a V b V a b E f a f b K
11 8 10 bitrd A USHGraph B USHGraph A 𝑔𝑟 B f f : V 1-1 onto W a V b V a b E f a f b K