Step |
Hyp |
Ref |
Expression |
1 |
|
gricushgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐴 ) |
2 |
|
gricushgr.w |
⊢ 𝑊 = ( Vtx ‘ 𝐵 ) |
3 |
|
gricushgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐴 ) |
4 |
|
gricushgr.k |
⊢ 𝐾 = ( Edg ‘ 𝐵 ) |
5 |
|
brgric |
⊢ ( 𝐴 ≃𝑔𝑟 𝐵 ↔ ( 𝐴 GraphIso 𝐵 ) ≠ ∅ ) |
6 |
|
n0 |
⊢ ( ( 𝐴 GraphIso 𝐵 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ) |
7 |
5 6
|
bitri |
⊢ ( 𝐴 ≃𝑔𝑟 𝐵 ↔ ∃ 𝑓 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ) |
8 |
7
|
a1i |
⊢ ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) → ( 𝐴 ≃𝑔𝑟 𝐵 ↔ ∃ 𝑓 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ) ) |
9 |
1 2 3 4
|
isuspgrim |
⊢ ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) → ( 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ↔ ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) ) ) |
10 |
9
|
exbidv |
⊢ ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) → ( ∃ 𝑓 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) ) ) |
11 |
8 10
|
bitrd |
⊢ ( ( 𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph ) → ( 𝐴 ≃𝑔𝑟 𝐵 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑎 , 𝑏 } ∈ 𝐸 ↔ { ( 𝑓 ‘ 𝑎 ) , ( 𝑓 ‘ 𝑏 ) } ∈ 𝐾 ) ) ) ) |