Metamath Proof Explorer


Theorem grpasscan2

Description: An associative cancellation law for groups. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by AV, 30-Aug-2021)

Ref Expression
Hypotheses grplcan.b B=BaseG
grplcan.p +˙=+G
grpasscan1.n N=invgG
Assertion grpasscan2 GGrpXBYBX+˙NY+˙Y=X

Proof

Step Hyp Ref Expression
1 grplcan.b B=BaseG
2 grplcan.p +˙=+G
3 grpasscan1.n N=invgG
4 simp1 GGrpXBYBGGrp
5 simp2 GGrpXBYBXB
6 1 3 grpinvcl GGrpYBNYB
7 6 3adant2 GGrpXBYBNYB
8 simp3 GGrpXBYBYB
9 1 2 grpass GGrpXBNYBYBX+˙NY+˙Y=X+˙NY+˙Y
10 4 5 7 8 9 syl13anc GGrpXBYBX+˙NY+˙Y=X+˙NY+˙Y
11 eqid 0G=0G
12 1 2 11 3 grplinv GGrpYBNY+˙Y=0G
13 12 3adant2 GGrpXBYBNY+˙Y=0G
14 13 oveq2d GGrpXBYBX+˙NY+˙Y=X+˙0G
15 1 2 11 grprid GGrpXBX+˙0G=X
16 15 3adant3 GGrpXBYBX+˙0G=X
17 10 14 16 3eqtrd GGrpXBYBX+˙NY+˙Y=X