Metamath Proof Explorer


Theorem grpodivf

Description: Mapping for group division. (Contributed by NM, 10-Apr-2008) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpdivf.1 X=ranG
grpdivf.3 D=/gG
Assertion grpodivf GGrpOpD:X×XX

Proof

Step Hyp Ref Expression
1 grpdivf.1 X=ranG
2 grpdivf.3 D=/gG
3 eqid invG=invG
4 1 3 grpoinvcl GGrpOpyXinvGyX
5 4 3adant2 GGrpOpxXyXinvGyX
6 1 grpocl GGrpOpxXinvGyXxGinvGyX
7 5 6 syld3an3 GGrpOpxXyXxGinvGyX
8 7 3expib GGrpOpxXyXxGinvGyX
9 8 ralrimivv GGrpOpxXyXxGinvGyX
10 eqid xX,yXxGinvGy=xX,yXxGinvGy
11 10 fmpo xXyXxGinvGyXxX,yXxGinvGy:X×XX
12 9 11 sylib GGrpOpxX,yXxGinvGy:X×XX
13 1 3 2 grpodivfval GGrpOpD=xX,yXxGinvGy
14 13 feq1d GGrpOpD:X×XXxX,yXxGinvGy:X×XX
15 12 14 mpbird GGrpOpD:X×XX