| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grprcan.1 |  | 
						
							| 2 |  | eqid |  | 
						
							| 3 | 1 2 | grpoidinv2 |  | 
						
							| 4 |  | simpr |  | 
						
							| 5 | 4 | reximi |  | 
						
							| 6 | 5 | adantl |  | 
						
							| 7 | 3 6 | syl |  | 
						
							| 8 | 7 | ad2ant2rl |  | 
						
							| 9 |  | oveq1 |  | 
						
							| 10 | 9 | ad2antll |  | 
						
							| 11 | 1 | grpoass |  | 
						
							| 12 | 11 | 3anassrs |  | 
						
							| 13 | 12 | adantlrl |  | 
						
							| 14 | 13 | adantrr |  | 
						
							| 15 | 1 | grpoass |  | 
						
							| 16 | 15 | 3exp2 |  | 
						
							| 17 | 16 | imp42 |  | 
						
							| 18 | 17 | adantllr |  | 
						
							| 19 | 18 | adantrr |  | 
						
							| 20 | 10 14 19 | 3eqtr3d |  | 
						
							| 21 | 20 | adantrrl |  | 
						
							| 22 |  | oveq2 |  | 
						
							| 23 | 22 | ad2antrl |  | 
						
							| 24 | 23 | adantl |  | 
						
							| 25 |  | oveq2 |  | 
						
							| 26 | 25 | ad2antrl |  | 
						
							| 27 | 26 | adantl |  | 
						
							| 28 | 21 24 27 | 3eqtr3d |  | 
						
							| 29 | 1 2 | grporid |  | 
						
							| 30 | 29 | ad2antrr |  | 
						
							| 31 | 1 2 | grporid |  | 
						
							| 32 | 31 | ad2ant2r |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 | 28 30 33 | 3eqtr3d |  | 
						
							| 35 | 34 | exp45 |  | 
						
							| 36 | 35 | rexlimdv |  | 
						
							| 37 | 8 36 | mpd |  | 
						
							| 38 |  | oveq1 |  | 
						
							| 39 | 37 38 | impbid1 |  | 
						
							| 40 | 39 | exp43 |  | 
						
							| 41 | 40 | 3imp2 |  |