Metamath Proof Explorer


Theorem grprinvd

Description: The right inverse of a group element. Deduction associated with grprinv . (Contributed by SN, 29-Jan-2025)

Ref Expression
Hypotheses grplinvd.b B=BaseG
grplinvd.p +˙=+G
grplinvd.u 0˙=0G
grplinvd.n N=invgG
grplinvd.g φGGrp
grplinvd.1 φXB
Assertion grprinvd φX+˙NX=0˙

Proof

Step Hyp Ref Expression
1 grplinvd.b B=BaseG
2 grplinvd.p +˙=+G
3 grplinvd.u 0˙=0G
4 grplinvd.n N=invgG
5 grplinvd.g φGGrp
6 grplinvd.1 φXB
7 1 2 3 4 grprinv GGrpXBX+˙NX=0˙
8 5 6 7 syl2anc φX+˙NX=0˙