| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grptcmon.c |  | 
						
							| 2 |  | grptcmon.g |  | 
						
							| 3 |  | grptcmon.b |  | 
						
							| 4 |  | grptcmon.x |  | 
						
							| 5 |  | grptcmon.y |  | 
						
							| 6 |  | grptcmon.h |  | 
						
							| 7 |  | grptcmon.m |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 | 2 | grpmndd |  | 
						
							| 13 | 1 12 | mndtccat |  | 
						
							| 14 | 4 3 | eleqtrd |  | 
						
							| 15 | 5 3 | eleqtrd |  | 
						
							| 16 | 8 9 10 11 13 14 15 | ismon2 |  | 
						
							| 17 | 1 | ad2antrr |  | 
						
							| 18 | 12 | ad2antrr |  | 
						
							| 19 | 3 | ad2antrr |  | 
						
							| 20 |  | simpr1 |  | 
						
							| 21 | 20 19 | eleqtrrd |  | 
						
							| 22 | 4 | ad2antrr |  | 
						
							| 23 | 5 | ad2antrr |  | 
						
							| 24 |  | eqidd |  | 
						
							| 25 |  | eqidd |  | 
						
							| 26 | 17 18 19 21 22 23 24 25 | mndtcco2 |  | 
						
							| 27 | 17 18 19 21 22 23 24 25 | mndtcco2 |  | 
						
							| 28 | 26 27 | eqeq12d |  | 
						
							| 29 | 2 | ad2antrr |  | 
						
							| 30 |  | simpr2 |  | 
						
							| 31 |  | eqidd |  | 
						
							| 32 | 17 18 19 21 22 31 | mndtchom |  | 
						
							| 33 | 30 32 | eleqtrd |  | 
						
							| 34 |  | simpr3 |  | 
						
							| 35 | 34 32 | eleqtrd |  | 
						
							| 36 |  | simplr |  | 
						
							| 37 | 17 18 19 22 23 31 | mndtchom |  | 
						
							| 38 | 36 37 | eleqtrd |  | 
						
							| 39 |  | eqid |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 | 39 40 | grplcan |  | 
						
							| 42 | 29 33 35 38 41 | syl13anc |  | 
						
							| 43 | 28 42 | bitrd |  | 
						
							| 44 | 43 | biimpd |  | 
						
							| 45 | 44 | ralrimivvva |  | 
						
							| 46 | 16 45 | mpbiran3d |  | 
						
							| 47 | 46 | eqrdv |  | 
						
							| 48 | 7 | oveqd |  | 
						
							| 49 | 6 | oveqd |  | 
						
							| 50 | 47 48 49 | 3eqtr4d |  |