Metamath Proof Explorer


Theorem gruuni

Description: A Grothendieck universe contains unions of its elements. (Contributed by Mario Carneiro, 17-Jun-2013)

Ref Expression
Assertion gruuni UUnivAUAU

Proof

Step Hyp Ref Expression
1 uniiun A=xAx
2 gruelss UUnivAUAU
3 dfss3 AUxAxU
4 2 3 sylib UUnivAUxAxU
5 gruiun UUnivAUxAxUxAxU
6 4 5 mpd3an3 UUnivAUxAxU
7 1 6 eqeltrid UUnivAUAU