Metamath Proof Explorer


Theorem gsumcom3fi

Description: A commutative law for finite iterated sums. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses gsumcom3fi.b B=BaseG
gsumcom3fi.g φGCMnd
gsumcom3fi.a φAFin
gsumcom3fi.r φCFin
gsumcom3fi.f φjAkCXB
Assertion gsumcom3fi φGjAGkCX=GkCGjAX

Proof

Step Hyp Ref Expression
1 gsumcom3fi.b B=BaseG
2 gsumcom3fi.g φGCMnd
3 gsumcom3fi.a φAFin
4 gsumcom3fi.r φCFin
5 gsumcom3fi.f φjAkCXB
6 eqid 0G=0G
7 xpfi AFinCFinA×CFin
8 3 4 7 syl2anc φA×CFin
9 brxp jA×CkjAkC
10 9 biimpri jAkCjA×Ck
11 10 adantl φjAkCjA×Ck
12 11 pm2.24d φjAkC¬jA×CkX=0G
13 12 impr φjAkC¬jA×CkX=0G
14 1 6 2 3 4 5 8 13 gsumcom3 φGjAGkCX=GkCGjAX