Metamath Proof Explorer


Theorem gsummhm

Description: Apply a group homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Revised by AV, 6-Jun-2019)

Ref Expression
Hypotheses gsummhm.b B=BaseG
gsummhm.z 0˙=0G
gsummhm.g φGCMnd
gsummhm.h φHMnd
gsummhm.a φAV
gsummhm.k φKGMndHomH
gsummhm.f φF:AB
gsummhm.w φfinSupp0˙F
Assertion gsummhm φHKF=KGF

Proof

Step Hyp Ref Expression
1 gsummhm.b B=BaseG
2 gsummhm.z 0˙=0G
3 gsummhm.g φGCMnd
4 gsummhm.h φHMnd
5 gsummhm.a φAV
6 gsummhm.k φKGMndHomH
7 gsummhm.f φF:AB
8 gsummhm.w φfinSupp0˙F
9 eqid CntzG=CntzG
10 cmnmnd GCMndGMnd
11 3 10 syl φGMnd
12 1 9 3 7 cntzcmnf φranFCntzGranF
13 1 9 11 4 5 6 7 12 2 8 gsumzmhm φHKF=KGF