Metamath Proof Explorer


Theorem gsummptcl

Description: Closure of a finite group sum over a finite set as map. (Contributed by AV, 29-Dec-2018)

Ref Expression
Hypotheses gsummptcl.b B=BaseG
gsummptcl.g φGCMnd
gsummptcl.n φNFin
gsummptcl.e φiNXB
Assertion gsummptcl φGiNXB

Proof

Step Hyp Ref Expression
1 gsummptcl.b B=BaseG
2 gsummptcl.g φGCMnd
3 gsummptcl.n φNFin
4 gsummptcl.e φiNXB
5 eqid 0G=0G
6 eqid iNX=iNX
7 6 fmpt iNXBiNX:NB
8 4 7 sylib φiNX:NB
9 6 fnmpt iNXBiNXFnN
10 4 9 syl φiNXFnN
11 fvexd φ0GV
12 10 3 11 fndmfifsupp φfinSupp0GiNX
13 1 5 2 3 8 12 gsumcl φGiNXB