Metamath Proof Explorer


Theorem gsummptfsadd

Description: The sum of two group sums expressed as mappings. (Contributed by AV, 4-Apr-2019) (Revised by AV, 9-Jul-2019)

Ref Expression
Hypotheses gsummptfsadd.b B=BaseG
gsummptfsadd.z 0˙=0G
gsummptfsadd.p +˙=+G
gsummptfsadd.g φGCMnd
gsummptfsadd.a φAV
gsummptfsadd.c φxACB
gsummptfsadd.d φxADB
gsummptfsadd.f φF=xAC
gsummptfsadd.h φH=xAD
gsummptfsadd.w φfinSupp0˙F
gsummptfsadd.v φfinSupp0˙H
Assertion gsummptfsadd φGxAC+˙D=GF+˙GH

Proof

Step Hyp Ref Expression
1 gsummptfsadd.b B=BaseG
2 gsummptfsadd.z 0˙=0G
3 gsummptfsadd.p +˙=+G
4 gsummptfsadd.g φGCMnd
5 gsummptfsadd.a φAV
6 gsummptfsadd.c φxACB
7 gsummptfsadd.d φxADB
8 gsummptfsadd.f φF=xAC
9 gsummptfsadd.h φH=xAD
10 gsummptfsadd.w φfinSupp0˙F
11 gsummptfsadd.v φfinSupp0˙H
12 5 6 7 8 9 offval2 φF+˙fH=xAC+˙D
13 12 eqcomd φxAC+˙D=F+˙fH
14 13 oveq2d φGxAC+˙D=GF+˙fH
15 8 6 fmpt3d φF:AB
16 9 7 fmpt3d φH:AB
17 1 2 3 4 5 15 16 10 11 gsumadd φGF+˙fH=GF+˙GH
18 14 17 eqtrd φGxAC+˙D=GF+˙GH