Metamath Proof Explorer


Theorem gsumsplit2

Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 5-Jun-2019)

Ref Expression
Hypotheses gsumsplit2.b B=BaseG
gsumsplit2.z 0˙=0G
gsumsplit2.p +˙=+G
gsumsplit2.g φGCMnd
gsumsplit2.a φAV
gsumsplit2.f φkAXB
gsumsplit2.w φfinSupp0˙kAX
gsumsplit2.i φCD=
gsumsplit2.u φA=CD
Assertion gsumsplit2 φGkAX=GkCX+˙GkDX

Proof

Step Hyp Ref Expression
1 gsumsplit2.b B=BaseG
2 gsumsplit2.z 0˙=0G
3 gsumsplit2.p +˙=+G
4 gsumsplit2.g φGCMnd
5 gsumsplit2.a φAV
6 gsumsplit2.f φkAXB
7 gsumsplit2.w φfinSupp0˙kAX
8 gsumsplit2.i φCD=
9 gsumsplit2.u φA=CD
10 6 fmpttd φkAX:AB
11 1 2 3 4 5 10 7 8 9 gsumsplit φGkAX=GkAXC+˙GkAXD
12 ssun1 CCD
13 12 9 sseqtrrid φCA
14 13 resmptd φkAXC=kCX
15 14 oveq2d φGkAXC=GkCX
16 ssun2 DCD
17 16 9 sseqtrrid φDA
18 17 resmptd φkAXD=kDX
19 18 oveq2d φGkAXD=GkDX
20 15 19 oveq12d φGkAXC+˙GkAXD=GkCX+˙GkDX
21 11 20 eqtrd φGkAX=GkCX+˙GkDX