Description: The group sum in a subring algebra is the same as the ring's group sum. (Contributed by Thierry Arnoux, 28-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumsra.1 | |
|
gsumsra.2 | |
||
gsumsra.3 | |
||
gsumsra.4 | |
||
gsumsra.5 | |
||
Assertion | gsumsra | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumsra.1 | |
|
2 | gsumsra.2 | |
|
3 | gsumsra.3 | |
|
4 | gsumsra.4 | |
|
5 | gsumsra.5 | |
|
6 | 1 | a1i | |
7 | 6 5 | srabase | |
8 | 6 5 | sraaddg | |
9 | 2 3 4 7 8 | gsumpropd | |