Metamath Proof Explorer


Theorem gsumsra

Description: The group sum in a subring algebra is the same as the ring's group sum. (Contributed by Thierry Arnoux, 28-May-2023)

Ref Expression
Hypotheses gsumsra.1 A = subringAlg R B
gsumsra.2 φ F U
gsumsra.3 φ R V
gsumsra.4 φ A W
gsumsra.5 φ B Base R
Assertion gsumsra φ R F = A F

Proof

Step Hyp Ref Expression
1 gsumsra.1 A = subringAlg R B
2 gsumsra.2 φ F U
3 gsumsra.3 φ R V
4 gsumsra.4 φ A W
5 gsumsra.5 φ B Base R
6 1 a1i φ A = subringAlg R B
7 6 5 srabase φ Base R = Base A
8 6 5 sraaddg φ + R = + A
9 2 3 4 7 8 gsumpropd φ R F = A F