Metamath Proof Explorer


Theorem gsumsra

Description: The group sum in a subring algebra is the same as the ring's group sum. (Contributed by Thierry Arnoux, 28-May-2023)

Ref Expression
Hypotheses gsumsra.1 A=subringAlgRB
gsumsra.2 φFU
gsumsra.3 φRV
gsumsra.4 φAW
gsumsra.5 φBBaseR
Assertion gsumsra φRF=AF

Proof

Step Hyp Ref Expression
1 gsumsra.1 A=subringAlgRB
2 gsumsra.2 φFU
3 gsumsra.3 φRV
4 gsumsra.4 φAW
5 gsumsra.5 φBBaseR
6 1 a1i φA=subringAlgRB
7 6 5 srabase φBaseR=BaseA
8 6 5 sraaddg φ+R=+A
9 2 3 4 7 8 gsumpropd φRF=AF