Metamath Proof Explorer


Theorem gsumsubm

Description: Evaluate a group sum in a submonoid. (Contributed by Mario Carneiro, 19-Dec-2014)

Ref Expression
Hypotheses gsumsubm.a φAV
gsumsubm.s φSSubMndG
gsumsubm.f φF:AS
gsumsubm.h H=G𝑠S
Assertion gsumsubm φGF=HF

Proof

Step Hyp Ref Expression
1 gsumsubm.a φAV
2 gsumsubm.s φSSubMndG
3 gsumsubm.f φF:AS
4 gsumsubm.h H=G𝑠S
5 eqid BaseG=BaseG
6 eqid +G=+G
7 submrcl SSubMndGGMnd
8 2 7 syl φGMnd
9 5 submss SSubMndGSBaseG
10 2 9 syl φSBaseG
11 eqid 0G=0G
12 11 subm0cl SSubMndG0GS
13 2 12 syl φ0GS
14 5 6 11 mndlrid GMndxBaseG0G+Gx=xx+G0G=x
15 8 14 sylan φxBaseG0G+Gx=xx+G0G=x
16 5 6 4 8 1 10 3 13 15 gsumress φGF=HF