Description: Pull a scalar multiplication out of a sum of vectors. This theorem properly generalizes gsummulc2 , since every ring is a left module over itself. (Contributed by Stefan O'Rear, 6-Feb-2015) (Revised by Mario Carneiro, 5-May-2015) (Revised by AV, 10-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumvsmul.b | |
|
gsumvsmul.s | |
||
gsumvsmul.k | |
||
gsumvsmul.z | |
||
gsumvsmul.p | |
||
gsumvsmul.t | |
||
gsumvsmul.r | |
||
gsumvsmul.a | |
||
gsumvsmul.x | |
||
gsumvsmul.y | |
||
gsumvsmul.n | |
||
Assertion | gsumvsmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumvsmul.b | |
|
2 | gsumvsmul.s | |
|
3 | gsumvsmul.k | |
|
4 | gsumvsmul.z | |
|
5 | gsumvsmul.p | |
|
6 | gsumvsmul.t | |
|
7 | gsumvsmul.r | |
|
8 | gsumvsmul.a | |
|
9 | gsumvsmul.x | |
|
10 | gsumvsmul.y | |
|
11 | gsumvsmul.n | |
|
12 | lmodcmn | |
|
13 | 7 12 | syl | |
14 | cmnmnd | |
|
15 | 13 14 | syl | |
16 | 1 2 6 3 | lmodvsghm | |
17 | 7 9 16 | syl2anc | |
18 | ghmmhm | |
|
19 | 17 18 | syl | |
20 | oveq2 | |
|
21 | oveq2 | |
|
22 | 1 4 13 15 8 19 10 11 20 21 | gsummhm2 | |