Metamath Proof Explorer


Theorem gsumz

Description: Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014)

Ref Expression
Hypothesis gsumz.z 0˙=0G
Assertion gsumz GMndAVGkA0˙=0˙

Proof

Step Hyp Ref Expression
1 gsumz.z 0˙=0G
2 eqid BaseG=BaseG
3 eqid +G=+G
4 eqid xBaseG|yBaseGx+Gy=yy+Gx=y=xBaseG|yBaseGx+Gy=yy+Gx=y
5 simpl GMndAVGMnd
6 simpr GMndAVAV
7 1 fvexi 0˙V
8 7 snid 0˙0˙
9 2 1 3 4 gsumvallem2 GMndxBaseG|yBaseGx+Gy=yy+Gx=y=0˙
10 8 9 eleqtrrid GMnd0˙xBaseG|yBaseGx+Gy=yy+Gx=y
11 10 ad2antrr GMndAVkA0˙xBaseG|yBaseGx+Gy=yy+Gx=y
12 11 fmpttd GMndAVkA0˙:AxBaseG|yBaseGx+Gy=yy+Gx=y
13 2 1 3 4 5 6 12 gsumval1 GMndAVGkA0˙=0˙