| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  | 
						
							| 2 |  | eqid |  | 
						
							| 3 | 2 | gsum0 |  | 
						
							| 4 | 1 3 | eqtrdi |  | 
						
							| 5 | 4 | eleq1d |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 |  | submrcl |  | 
						
							| 9 | 8 | ad2antrr |  | 
						
							| 10 |  | lennncl |  | 
						
							| 11 | 10 | adantll |  | 
						
							| 12 |  | nnm1nn0 |  | 
						
							| 13 | 11 12 | syl |  | 
						
							| 14 |  | nn0uz |  | 
						
							| 15 | 13 14 | eleqtrdi |  | 
						
							| 16 |  | wrdf |  | 
						
							| 17 | 16 | ad2antlr |  | 
						
							| 18 | 11 | nnzd |  | 
						
							| 19 |  | fzoval |  | 
						
							| 20 | 18 19 | syl |  | 
						
							| 21 | 20 | feq2d |  | 
						
							| 22 | 17 21 | mpbid |  | 
						
							| 23 | 6 | submss |  | 
						
							| 24 | 23 | ad2antrr |  | 
						
							| 25 | 22 24 | fssd |  | 
						
							| 26 | 6 7 9 15 25 | gsumval2 |  | 
						
							| 27 | 22 | ffvelcdmda |  | 
						
							| 28 | 7 | submcl |  | 
						
							| 29 | 28 | 3expb |  | 
						
							| 30 | 29 | ad4ant14 |  | 
						
							| 31 | 15 27 30 | seqcl |  | 
						
							| 32 | 26 31 | eqeltrd |  | 
						
							| 33 | 2 | subm0cl |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 | 5 32 34 | pm2.61ne |  |