Metamath Proof Explorer


Theorem gsumwsubmcl

Description: Closure of the composite in any submonoid. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 1-Oct-2015)

Ref Expression
Assertion gsumwsubmcl S SubMnd G W Word S G W S

Proof

Step Hyp Ref Expression
1 oveq2 W = G W = G
2 eqid 0 G = 0 G
3 2 gsum0 G = 0 G
4 1 3 eqtrdi W = G W = 0 G
5 4 eleq1d W = G W S 0 G S
6 eqid Base G = Base G
7 eqid + G = + G
8 submrcl S SubMnd G G Mnd
9 8 ad2antrr S SubMnd G W Word S W G Mnd
10 lennncl W Word S W W
11 10 adantll S SubMnd G W Word S W W
12 nnm1nn0 W W 1 0
13 11 12 syl S SubMnd G W Word S W W 1 0
14 nn0uz 0 = 0
15 13 14 eleqtrdi S SubMnd G W Word S W W 1 0
16 wrdf W Word S W : 0 ..^ W S
17 16 ad2antlr S SubMnd G W Word S W W : 0 ..^ W S
18 11 nnzd S SubMnd G W Word S W W
19 fzoval W 0 ..^ W = 0 W 1
20 18 19 syl S SubMnd G W Word S W 0 ..^ W = 0 W 1
21 20 feq2d S SubMnd G W Word S W W : 0 ..^ W S W : 0 W 1 S
22 17 21 mpbid S SubMnd G W Word S W W : 0 W 1 S
23 6 submss S SubMnd G S Base G
24 23 ad2antrr S SubMnd G W Word S W S Base G
25 22 24 fssd S SubMnd G W Word S W W : 0 W 1 Base G
26 6 7 9 15 25 gsumval2 S SubMnd G W Word S W G W = seq 0 + G W W 1
27 22 ffvelrnda S SubMnd G W Word S W x 0 W 1 W x S
28 7 submcl S SubMnd G x S y S x + G y S
29 28 3expb S SubMnd G x S y S x + G y S
30 29 ad4ant14 S SubMnd G W Word S W x S y S x + G y S
31 15 27 30 seqcl S SubMnd G W Word S W seq 0 + G W W 1 S
32 26 31 eqeltrd S SubMnd G W Word S W G W S
33 2 subm0cl S SubMnd G 0 G S
34 33 adantr S SubMnd G W Word S 0 G S
35 5 32 34 pm2.61ne S SubMnd G W Word S G W S