Description: One-half of any positive fraction exists. Lemma for Proposition 9-2.6(i) of Gleason p. 120. (Contributed by NM, 16-Mar-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | halfnq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | distrnq | |
|
2 | distrnq | |
|
3 | 1nq | |
|
4 | addclnq | |
|
5 | 3 3 4 | mp2an | |
6 | recidnq | |
|
7 | 5 6 | ax-mp | |
8 | 7 7 | oveq12i | |
9 | 2 8 | eqtri | |
10 | 9 | oveq1i | |
11 | 7 | oveq2i | |
12 | mulassnq | |
|
13 | mulcomnq | |
|
14 | 13 | oveq1i | |
15 | 12 14 | eqtr3i | |
16 | recclnq | |
|
17 | addclnq | |
|
18 | 16 16 17 | syl2anc | |
19 | mulidnq | |
|
20 | 5 18 19 | mp2b | |
21 | 11 15 20 | 3eqtr3i | |
22 | 10 21 7 | 3eqtr3i | |
23 | 22 | oveq2i | |
24 | 1 23 | eqtr3i | |
25 | mulidnq | |
|
26 | 24 25 | eqtrid | |
27 | ovex | |
|
28 | oveq12 | |
|
29 | 28 | anidms | |
30 | 29 | eqeq1d | |
31 | 27 30 | spcev | |
32 | 26 31 | syl | |