| Step |
Hyp |
Ref |
Expression |
| 1 |
|
distrnq |
|
| 2 |
|
distrnq |
|
| 3 |
|
1nq |
|
| 4 |
|
addclnq |
|
| 5 |
3 3 4
|
mp2an |
|
| 6 |
|
recidnq |
|
| 7 |
5 6
|
ax-mp |
|
| 8 |
7 7
|
oveq12i |
|
| 9 |
2 8
|
eqtri |
|
| 10 |
9
|
oveq1i |
|
| 11 |
7
|
oveq2i |
|
| 12 |
|
mulassnq |
|
| 13 |
|
mulcomnq |
|
| 14 |
13
|
oveq1i |
|
| 15 |
12 14
|
eqtr3i |
|
| 16 |
|
recclnq |
|
| 17 |
|
addclnq |
|
| 18 |
16 16 17
|
syl2anc |
|
| 19 |
|
mulidnq |
|
| 20 |
5 18 19
|
mp2b |
|
| 21 |
11 15 20
|
3eqtr3i |
|
| 22 |
10 21 7
|
3eqtr3i |
|
| 23 |
22
|
oveq2i |
|
| 24 |
1 23
|
eqtr3i |
|
| 25 |
|
mulidnq |
|
| 26 |
24 25
|
eqtrid |
|
| 27 |
|
ovex |
|
| 28 |
|
oveq12 |
|
| 29 |
28
|
anidms |
|
| 30 |
29
|
eqeq1d |
|
| 31 |
27 30
|
spcev |
|
| 32 |
26 31
|
syl |
|