Metamath Proof Explorer


Theorem harval2

Description: An alternate expression for the Hartogs number of a well-orderable set. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion harval2 AdomcardharA=xOn|Ax

Proof

Step Hyp Ref Expression
1 harval AdomcardharA=yOn|yA
2 1 adantr AdomcardxOnAxharA=yOn|yA
3 sdomel yOnxOnyxyx
4 domsdomtr yAAxyx
5 3 4 impel yOnxOnyAAxyx
6 5 an4s yOnyAxOnAxyx
7 6 ancoms xOnAxyOnyAyx
8 7 3impb xOnAxyOnyAyx
9 8 rabssdv xOnAxyOn|yAx
10 9 adantl AdomcardxOnAxyOn|yAx
11 2 10 eqsstrd AdomcardxOnAxharAx
12 11 expr AdomcardxOnAxharAx
13 12 ralrimiva AdomcardxOnAxharAx
14 ssintrab harAxOn|AxxOnAxharAx
15 13 14 sylibr AdomcardharAxOn|Ax
16 breq2 x=harAAxAharA
17 harcl harAOn
18 17 a1i AdomcardharAOn
19 harsdom AdomcardAharA
20 16 18 19 elrabd AdomcardharAxOn|Ax
21 intss1 harAxOn|AxxOn|AxharA
22 20 21 syl AdomcardxOn|AxharA
23 15 22 eqssd AdomcardharA=xOn|Ax