Metamath Proof Explorer


Theorem hashdomi

Description: Non-strict order relation of the # function on the full cardinal poset. (Contributed by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Assertion hashdomi ABAB

Proof

Step Hyp Ref Expression
1 simpl ABAFinAB
2 simpr ABAFinAFin
3 reldom Rel
4 3 brrelex2i ABBV
5 4 adantr ABAFinBV
6 hashdom AFinBVABAB
7 2 5 6 syl2anc ABAFinABAB
8 1 7 mpbird ABAFinAB
9 pnfxr +∞*
10 pnfge +∞*+∞+∞
11 9 10 mp1i AB¬AFin+∞+∞
12 3 brrelex1i ABAV
13 hashinf AV¬AFinA=+∞
14 12 13 sylan AB¬AFinA=+∞
15 4 adantr AB¬AFinBV
16 domfi BFinABAFin
17 16 stoic1b AB¬AFin¬BFin
18 hashinf BV¬BFinB=+∞
19 15 17 18 syl2anc AB¬AFinB=+∞
20 11 14 19 3brtr4d AB¬AFinAB
21 8 20 pm2.61dan ABAB