Metamath Proof Explorer


Theorem hasheq0

Description: Two ways of saying a set is empty. (Contributed by Paul Chapman, 26-Oct-2012) (Revised by Mario Carneiro, 27-Jul-2014)

Ref Expression
Assertion hasheq0 AVA=0A=

Proof

Step Hyp Ref Expression
1 pnfnre +∞
2 1 neli ¬+∞
3 hashinf AV¬AFinA=+∞
4 3 eleq1d AV¬AFinA+∞
5 2 4 mtbiri AV¬AFin¬A
6 id A=0A=0
7 0re 0
8 6 7 eqeltrdi A=0A
9 5 8 nsyl AV¬AFin¬A=0
10 id A=A=
11 0fin Fin
12 10 11 eqeltrdi A=AFin
13 12 con3i ¬AFin¬A=
14 13 adantl AV¬AFin¬A=
15 9 14 2falsed AV¬AFinA=0A=
16 15 ex AV¬AFinA=0A=
17 hashen AFinFinA=A
18 11 17 mpan2 AFinA=A
19 fz10 10=
20 19 fveq2i 10=
21 0nn0 00
22 hashfz1 0010=0
23 21 22 ax-mp 10=0
24 20 23 eqtr3i =0
25 24 eqeq2i A=A=0
26 en0 AA=
27 18 25 26 3bitr3g AFinA=0A=
28 16 27 pm2.61d2 AVA=0A=