| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumiun.1 |  | 
						
							| 2 |  | fsumiun.2 |  | 
						
							| 3 |  | fsumiun.3 |  | 
						
							| 4 |  | 1cnd |  | 
						
							| 5 | 1 2 3 4 | fsumiun |  | 
						
							| 6 | 2 | ralrimiva |  | 
						
							| 7 |  | iunfi |  | 
						
							| 8 | 1 6 7 | syl2anc |  | 
						
							| 9 |  | ax-1cn |  | 
						
							| 10 |  | fsumconst |  | 
						
							| 11 | 8 9 10 | sylancl |  | 
						
							| 12 |  | hashcl |  | 
						
							| 13 |  | nn0cn |  | 
						
							| 14 |  | mulrid |  | 
						
							| 15 | 8 12 13 14 | 4syl |  | 
						
							| 16 | 11 15 | eqtrd |  | 
						
							| 17 |  | fsumconst |  | 
						
							| 18 | 2 9 17 | sylancl |  | 
						
							| 19 |  | hashcl |  | 
						
							| 20 |  | nn0cn |  | 
						
							| 21 |  | mulrid |  | 
						
							| 22 | 2 19 20 21 | 4syl |  | 
						
							| 23 | 18 22 | eqtrd |  | 
						
							| 24 | 23 | sumeq2dv |  | 
						
							| 25 | 5 16 24 | 3eqtr3d |  |