Metamath Proof Explorer


Theorem hashv01gt1

Description: The size of a set is either 0 or 1 or greater than 1. (Contributed by Alexander van der Vekens, 29-Dec-2017)

Ref Expression
Assertion hashv01gt1 MVM=0M=11<M

Proof

Step Hyp Ref Expression
1 hashnn0pnf MVM0M=+∞
2 elnn0 M0MM=0
3 exmidne M=1M1
4 nngt1ne1 M1<MM1
5 4 orbi2d MM=11<MM=1M1
6 3 5 mpbiri MM=11<M
7 6 olcd MM=0M=11<M
8 3orass M=0M=11<MM=0M=11<M
9 7 8 sylibr MM=0M=11<M
10 3mix1 M=0M=0M=11<M
11 9 10 jaoi MM=0M=0M=11<M
12 2 11 sylbi M0M=0M=11<M
13 1re 1
14 ltpnf 11<+∞
15 13 14 ax-mp 1<+∞
16 breq2 M=+∞1<M1<+∞
17 15 16 mpbiri M=+∞1<M
18 17 3mix3d M=+∞M=0M=11<M
19 12 18 jaoi M0M=+∞M=0M=11<M
20 1 19 syl MVM=0M=11<M