Metamath Proof Explorer


Theorem hashwwlksnext

Description: Number of walks (as words) extended by an edge as a sum over the prefixes. (Contributed by Alexander van der Vekens, 21-Aug-2018) (Revised by AV, 20-Apr-2021) (Revised by AV, 26-Oct-2022)

Ref Expression
Hypotheses wwlksnextprop.x X=N+1WWalksNG
wwlksnextprop.e E=EdgG
wwlksnextprop.y Y=wNWWalksNG|w0=P
Assertion hashwwlksnext VtxGFinxX|yYxprefixM=yy0=PlastSylastSxE=yYxX|xprefixM=yy0=PlastSylastSxE

Proof

Step Hyp Ref Expression
1 wwlksnextprop.x X=N+1WWalksNG
2 wwlksnextprop.e E=EdgG
3 wwlksnextprop.y Y=wNWWalksNG|w0=P
4 wwlksnfi VtxGFinNWWalksNGFin
5 ssrab2 wNWWalksNG|w0=PNWWalksNG
6 ssfi NWWalksNGFinwNWWalksNG|w0=PNWWalksNGwNWWalksNG|w0=PFin
7 4 5 6 sylancl VtxGFinwNWWalksNG|w0=PFin
8 3 7 eqeltrid VtxGFinYFin
9 wwlksnfi VtxGFinN+1WWalksNGFin
10 1 9 eqeltrid VtxGFinXFin
11 rabfi XFinxX|xprefixM=yy0=PlastSylastSxEFin
12 10 11 syl VtxGFinxX|xprefixM=yy0=PlastSylastSxEFin
13 12 adantr VtxGFinyYxX|xprefixM=yy0=PlastSylastSxEFin
14 1 2 3 disjxwwlkn DisjyYxX|xprefixM=yy0=PlastSylastSxE
15 14 a1i VtxGFinDisjyYxX|xprefixM=yy0=PlastSylastSxE
16 8 13 15 hashrabrex VtxGFinxX|yYxprefixM=yy0=PlastSylastSxE=yYxX|xprefixM=yy0=PlastSylastSxE