Metamath Proof Explorer


Theorem hauspwpwdom

Description: If X is a Hausdorff space, then the cardinality of the closure of a set A is bounded by the double powerset of A . In particular, a Hausdorff space with a dense subset A has cardinality at most ~P ~P A , and a separable Hausdorff space has cardinality at most ~P ~P NN . (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Mario Carneiro, 28-Jul-2015)

Ref Expression
Hypothesis hauspwpwf1.x X=J
Assertion hauspwpwdom JHausAXclsJA𝒫𝒫A

Proof

Step Hyp Ref Expression
1 hauspwpwf1.x X=J
2 fvexd JHausAXclsJAV
3 haustop JHausJTop
4 1 topopn JTopXJ
5 3 4 syl JHausXJ
6 5 adantr JHausAXXJ
7 simpr JHausAXAX
8 6 7 ssexd JHausAXAV
9 pwexg AV𝒫AV
10 pwexg 𝒫AV𝒫𝒫AV
11 8 9 10 3syl JHausAX𝒫𝒫AV
12 eqid xclsJAz|yJxyz=yA=xclsJAz|yJxyz=yA
13 1 12 hauspwpwf1 JHausAXxclsJAz|yJxyz=yA:clsJA1-1𝒫𝒫A
14 f1dom2g clsJAV𝒫𝒫AVxclsJAz|yJxyz=yA:clsJA1-1𝒫𝒫AclsJA𝒫𝒫A
15 2 11 13 14 syl3anc JHausAXclsJA𝒫𝒫A