| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hauspwpwf1.x |
|
| 2 |
|
hauspwpwf1.f |
|
| 3 |
|
inss2 |
|
| 4 |
|
vex |
|
| 5 |
4
|
inex1 |
|
| 6 |
5
|
elpw |
|
| 7 |
3 6
|
mpbir |
|
| 8 |
|
eleq1 |
|
| 9 |
7 8
|
mpbiri |
|
| 10 |
9
|
adantl |
|
| 11 |
10
|
rexlimivw |
|
| 12 |
11
|
abssi |
|
| 13 |
|
haustop |
|
| 14 |
1
|
topopn |
|
| 15 |
13 14
|
syl |
|
| 16 |
|
ssexg |
|
| 17 |
15 16
|
sylan2 |
|
| 18 |
17
|
ancoms |
|
| 19 |
|
pwexg |
|
| 20 |
|
elpw2g |
|
| 21 |
18 19 20
|
3syl |
|
| 22 |
12 21
|
mpbiri |
|
| 23 |
22
|
a1d |
|
| 24 |
|
simplll |
|
| 25 |
1
|
clsss3 |
|
| 26 |
13 25
|
sylan |
|
| 27 |
26
|
ad2antrr |
|
| 28 |
|
simplrl |
|
| 29 |
27 28
|
sseldd |
|
| 30 |
|
simplrr |
|
| 31 |
27 30
|
sseldd |
|
| 32 |
|
simpr |
|
| 33 |
1
|
hausnei |
|
| 34 |
24 29 31 32 33
|
syl13anc |
|
| 35 |
|
simprll |
|
| 36 |
|
simprr1 |
|
| 37 |
|
eqidd |
|
| 38 |
|
elequ2 |
|
| 39 |
|
ineq1 |
|
| 40 |
39
|
eqeq2d |
|
| 41 |
38 40
|
anbi12d |
|
| 42 |
41
|
rspcev |
|
| 43 |
35 36 37 42
|
syl12anc |
|
| 44 |
|
vex |
|
| 45 |
44
|
inex1 |
|
| 46 |
|
eqeq1 |
|
| 47 |
46
|
anbi2d |
|
| 48 |
47
|
rexbidv |
|
| 49 |
45 48
|
elab |
|
| 50 |
43 49
|
sylibr |
|
| 51 |
13
|
ad2antrr |
|
| 52 |
51
|
ad3antrrr |
|
| 53 |
|
simplr |
|
| 54 |
53
|
ad3antrrr |
|
| 55 |
|
simprr |
|
| 56 |
55
|
ad3antrrr |
|
| 57 |
|
simplr |
|
| 58 |
57
|
ad2antlr |
|
| 59 |
|
simprl |
|
| 60 |
|
inopn |
|
| 61 |
52 58 59 60
|
syl3anc |
|
| 62 |
|
simpr2 |
|
| 63 |
62
|
ad2antlr |
|
| 64 |
|
simprr |
|
| 65 |
63 64
|
elind |
|
| 66 |
1
|
clsndisj |
|
| 67 |
52 54 56 61 65 66
|
syl32anc |
|
| 68 |
|
n0 |
|
| 69 |
67 68
|
sylib |
|
| 70 |
|
elin |
|
| 71 |
|
elin |
|
| 72 |
71
|
anbi1i |
|
| 73 |
70 72
|
bitri |
|
| 74 |
|
elin |
|
| 75 |
74
|
biimpri |
|
| 76 |
75
|
adantll |
|
| 77 |
76
|
ad2antll |
|
| 78 |
|
simpll |
|
| 79 |
78
|
ad2antll |
|
| 80 |
|
simpr3 |
|
| 81 |
80
|
ad2antlr |
|
| 82 |
|
minel |
|
| 83 |
|
elinel1 |
|
| 84 |
82 83
|
nsyl |
|
| 85 |
79 81 84
|
syl2anc |
|
| 86 |
|
nelneq2 |
|
| 87 |
77 85 86
|
syl2anc |
|
| 88 |
|
eqcom |
|
| 89 |
87 88
|
sylnib |
|
| 90 |
89
|
expr |
|
| 91 |
73 90
|
biimtrid |
|
| 92 |
91
|
exlimdv |
|
| 93 |
69 92
|
mpd |
|
| 94 |
93
|
anassrs |
|
| 95 |
|
nan |
|
| 96 |
94 95
|
mpbir |
|
| 97 |
96
|
nrexdv |
|
| 98 |
46
|
anbi2d |
|
| 99 |
98
|
rexbidv |
|
| 100 |
45 99
|
elab |
|
| 101 |
97 100
|
sylnibr |
|
| 102 |
|
nelne1 |
|
| 103 |
50 101 102
|
syl2anc |
|
| 104 |
103
|
expr |
|
| 105 |
104
|
rexlimdvva |
|
| 106 |
34 105
|
mpd |
|
| 107 |
106
|
ex |
|
| 108 |
107
|
necon4d |
|
| 109 |
|
eleq1 |
|
| 110 |
109
|
anbi1d |
|
| 111 |
110
|
rexbidv |
|
| 112 |
111
|
abbidv |
|
| 113 |
108 112
|
impbid1 |
|
| 114 |
113
|
ex |
|
| 115 |
23 114
|
dom2lem |
|
| 116 |
|
f1eq1 |
|
| 117 |
2 116
|
ax-mp |
|
| 118 |
115 117
|
sylibr |
|