Metamath Proof Explorer


Theorem hbexg

Description: Closed form of nfex . Derived from hbexgVD . (Contributed by Alan Sare, 8-Feb-2014) (Revised by Mario Carneiro, 12-Dec-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion hbexg xyφxφxyyφxyφ

Proof

Step Hyp Ref Expression
1 nfa2 yxyφxφ
2 sp yφxφφxφ
3 2 alimi xyφxφxφxφ
4 nf5 xφxφxφ
5 3 4 sylibr xyφxφxφ
6 1 5 nfexd xyφxφxyφ
7 nf5 xyφxyφxyφ
8 6 7 sylib xyφxφxyφxyφ
9 1 8 alrimi xyφxφyxyφxyφ
10 alcom yxyφxyφxyyφxyφ
11 9 10 sylib xyφxφxyyφxyφ