Metamath Proof Explorer


Theorem hdmap14lem1a

Description: Prior to part 14 in Baer p. 49, line 25. (Contributed by NM, 31-May-2015)

Ref Expression
Hypotheses hdmap14lem1a.h H=LHypK
hdmap14lem1a.u U=DVecHKW
hdmap14lem1a.v V=BaseU
hdmap14lem1a.t ·˙=U
hdmap14lem1a.r R=ScalarU
hdmap14lem1a.b B=BaseR
hdmap14lem1a.c C=LCDualKW
hdmap14lem2a.e ˙=C
hdmap14lem1a.l L=LSpanC
hdmap14lem2a.p P=ScalarC
hdmap14lem2a.a A=BaseP
hdmap14lem1a.s S=HDMapKW
hdmap14lem1a.k φKHLWH
hdmap14lem3a.x φXV
hdmap14lem1a.f φFB
hdmap14lem1a.z 0˙=0R
hdmap14lem1a.fn φF0˙
Assertion hdmap14lem1a φLSX=LSF·˙X

Proof

Step Hyp Ref Expression
1 hdmap14lem1a.h H=LHypK
2 hdmap14lem1a.u U=DVecHKW
3 hdmap14lem1a.v V=BaseU
4 hdmap14lem1a.t ·˙=U
5 hdmap14lem1a.r R=ScalarU
6 hdmap14lem1a.b B=BaseR
7 hdmap14lem1a.c C=LCDualKW
8 hdmap14lem2a.e ˙=C
9 hdmap14lem1a.l L=LSpanC
10 hdmap14lem2a.p P=ScalarC
11 hdmap14lem2a.a A=BaseP
12 hdmap14lem1a.s S=HDMapKW
13 hdmap14lem1a.k φKHLWH
14 hdmap14lem3a.x φXV
15 hdmap14lem1a.f φFB
16 hdmap14lem1a.z 0˙=0R
17 hdmap14lem1a.fn φF0˙
18 1 2 13 dvhlvec φULVec
19 eqid LSpanU=LSpanU
20 3 5 4 6 16 19 lspsnvs ULVecFBF0˙XVLSpanUF·˙X=LSpanUX
21 18 15 17 14 20 syl121anc φLSpanUF·˙X=LSpanUX
22 21 fveq2d φmapdKWLSpanUF·˙X=mapdKWLSpanUX
23 eqid mapdKW=mapdKW
24 1 2 13 dvhlmod φULMod
25 3 5 4 6 lmodvscl ULModFBXVF·˙XV
26 24 15 14 25 syl3anc φF·˙XV
27 1 2 3 19 7 9 23 12 13 26 hdmap10 φmapdKWLSpanUF·˙X=LSF·˙X
28 1 2 3 19 7 9 23 12 13 14 hdmap10 φmapdKWLSpanUX=LSX
29 22 27 28 3eqtr3rd φLSX=LSF·˙X