Metamath Proof Explorer


Theorem hdmapellkr

Description: Membership in the kernel (as shown by hdmaplkr ) of the vector to dual map. Line 17 in Holland95 p. 14. (Contributed by NM, 16-Jun-2015)

Ref Expression
Hypotheses hdmapellkr.h H = LHyp K
hdmapellkr.o O = ocH K W
hdmapellkr.u U = DVecH K W
hdmapellkr.v V = Base U
hdmapellkr.r R = Scalar U
hdmapellkr.z 0 ˙ = 0 R
hdmapellkr.s S = HDMap K W
hdmapellkr.k φ K HL W H
hdmapellkr.x φ X V
hdmapellkr.y φ Y V
Assertion hdmapellkr φ S X Y = 0 ˙ Y O X

Proof

Step Hyp Ref Expression
1 hdmapellkr.h H = LHyp K
2 hdmapellkr.o O = ocH K W
3 hdmapellkr.u U = DVecH K W
4 hdmapellkr.v V = Base U
5 hdmapellkr.r R = Scalar U
6 hdmapellkr.z 0 ˙ = 0 R
7 hdmapellkr.s S = HDMap K W
8 hdmapellkr.k φ K HL W H
9 hdmapellkr.x φ X V
10 hdmapellkr.y φ Y V
11 eqid LFnl U = LFnl U
12 eqid LKer U = LKer U
13 1 3 8 dvhlmod φ U LMod
14 eqid LCDual K W = LCDual K W
15 eqid Base LCDual K W = Base LCDual K W
16 1 3 4 14 15 7 8 9 hdmapcl φ S X Base LCDual K W
17 1 14 15 3 11 8 16 lcdvbaselfl φ S X LFnl U
18 4 5 6 11 12 13 17 10 ellkr2 φ Y LKer U S X S X Y = 0 ˙
19 1 2 3 4 11 12 7 8 9 hdmaplkr φ LKer U S X = O X
20 19 eleq2d φ Y LKer U S X Y O X
21 18 20 bitr3d φ S X Y = 0 ˙ Y O X