Metamath Proof Explorer


Theorem hdmapg

Description: Apply the scalar sigma function (involution) G to an inner product reverses the arguments. The inner product of X and Y is represented by ( ( SY )X ) . Line 15 in Baer p. 111, f(x,y) alpha = f(y,x). (Contributed by NM, 14-Jun-2015)

Ref Expression
Hypotheses hdmapg.h H=LHypK
hdmapg.u U=DVecHKW
hdmapg.v V=BaseU
hdmapg.s S=HDMapKW
hdmapg.g G=HGMapKW
hdmapg.k φKHLWH
hdmapg.x φXV
hdmapg.y φYV
Assertion hdmapg φGSYX=SXY

Proof

Step Hyp Ref Expression
1 hdmapg.h H=LHypK
2 hdmapg.u U=DVecHKW
3 hdmapg.v V=BaseU
4 hdmapg.s S=HDMapKW
5 hdmapg.g G=HGMapKW
6 hdmapg.k φKHLWH
7 hdmapg.x φXV
8 hdmapg.y φYV
9 eqid IBaseKILTrnKW=IBaseKILTrnKW
10 eqid ocHKW=ocHKW
11 eqid +U=+U
12 eqid U=U
13 eqid ScalarU=ScalarU
14 eqid BaseScalarU=BaseScalarU
15 eqid LSSumU=LSSumU
16 eqid LSpanU=LSpanU
17 eqid ScalarU=ScalarU
18 eqid 0ScalarU=0ScalarU
19 eqid +ScalarU=+ScalarU
20 1 9 10 2 3 11 12 13 14 15 16 6 7 17 18 19 4 5 8 hdmapglem7 φGSYX=SXY