Metamath Proof Explorer


Theorem hdmaplem3

Description: Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015)

Ref Expression
Hypotheses hdmaplem1.v V = Base W
hdmaplem1.n N = LSpan W
hdmaplem1.w φ W LMod
hdmaplem1.z φ Z V
hdmaplem1.j φ ¬ Z N X N Y
hdmaplem1.y φ Y V
hdmaplem3.o 0 ˙ = 0 W
Assertion hdmaplem3 φ Z V 0 ˙

Proof

Step Hyp Ref Expression
1 hdmaplem1.v V = Base W
2 hdmaplem1.n N = LSpan W
3 hdmaplem1.w φ W LMod
4 hdmaplem1.z φ Z V
5 hdmaplem1.j φ ¬ Z N X N Y
6 hdmaplem1.y φ Y V
7 hdmaplem3.o 0 ˙ = 0 W
8 eqid LSubSp W = LSubSp W
9 1 8 2 lspsncl W LMod Y V N Y LSubSp W
10 3 6 9 syl2anc φ N Y LSubSp W
11 elun2 Z N Y Z N X N Y
12 5 11 nsyl φ ¬ Z N Y
13 7 8 3 10 4 12 lssneln0 φ Z V 0 ˙