Metamath Proof Explorer


Theorem hfpw

Description: The power class of an HF set is hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015)

Ref Expression
Assertion hfpw AHf𝒫AHf

Proof

Step Hyp Ref Expression
1 rankpwg AHfrank𝒫A=sucrankA
2 elhf2g AHfAHfrankAω
3 2 ibi AHfrankAω
4 peano2 rankAωsucrankAω
5 3 4 syl AHfsucrankAω
6 1 5 eqeltrd AHfrank𝒫Aω
7 pwexg AHf𝒫AV
8 elhf2g 𝒫AV𝒫AHfrank𝒫Aω
9 7 8 syl AHf𝒫AHfrank𝒫Aω
10 6 9 mpbird AHf𝒫AHf