Metamath Proof Explorer


Theorem hhmet

Description: The induced metric of Hilbert space. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhnv.1 U=+norm
hhims2.2 D=IndMetU
Assertion hhmet DMet

Proof

Step Hyp Ref Expression
1 hhnv.1 U=+norm
2 hhims2.2 D=IndMetU
3 1 hhnv UNrmCVec
4 1 hhba =BaseSetU
5 4 2 imsmet UNrmCVecDMet
6 3 5 ax-mp DMet