Metamath Proof Explorer


Theorem hhssbnOLD

Description: Obsolete version of cssbn : Banach space property of a closed subspace. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses hhssbnOLD.1 W=+H×H×HnormH
hhssbnOLD.2 HC
Assertion hhssbnOLD WCBan

Proof

Step Hyp Ref Expression
1 hhssbnOLD.1 W=+H×H×HnormH
2 hhssbnOLD.2 HC
3 2 chshii HS
4 1 3 hhssnv WNrmCVec
5 eqid IndMetW=IndMetW
6 1 5 2 hhsscms IndMetWCMetH
7 1 3 hhssba H=BaseSetW
8 7 5 iscbn WCBanWNrmCVecIndMetWCMetH
9 4 6 8 mpbir2an WCBan