Metamath Proof Explorer


Theorem hl2at

Description: A Hilbert lattice has at least 2 atoms. (Contributed by NM, 5-Dec-2011)

Ref Expression
Hypothesis hl2atom.a A=AtomsK
Assertion hl2at KHLpAqApq

Proof

Step Hyp Ref Expression
1 hl2atom.a A=AtomsK
2 eqid BaseK=BaseK
3 eqid <K=<K
4 eqid 0.K=0.K
5 eqid 1.K=1.K
6 2 3 4 5 hlhgt2 KHLxBaseK0.K<Kxx<K1.K
7 simpl KHLxBaseKKHL
8 hlop KHLKOP
9 8 adantr KHLxBaseKKOP
10 2 4 op0cl KOP0.KBaseK
11 9 10 syl KHLxBaseK0.KBaseK
12 simpr KHLxBaseKxBaseK
13 eqid K=K
14 2 13 3 1 hlrelat1 KHL0.KBaseKxBaseK0.K<KxpA¬pK0.KpKx
15 7 11 12 14 syl3anc KHLxBaseK0.K<KxpA¬pK0.KpKx
16 2 5 op1cl KOP1.KBaseK
17 9 16 syl KHLxBaseK1.KBaseK
18 2 13 3 1 hlrelat1 KHLxBaseK1.KBaseKx<K1.KqA¬qKxqK1.K
19 17 18 mpd3an3 KHLxBaseKx<K1.KqA¬qKxqK1.K
20 15 19 anim12d KHLxBaseK0.K<Kxx<K1.KpA¬pK0.KpKxqA¬qKxqK1.K
21 reeanv pAqA¬pK0.KpKx¬qKxqK1.KpA¬pK0.KpKxqA¬qKxqK1.K
22 nbrne2 pKx¬qKxpq
23 22 ad2ant2lr ¬pK0.KpKx¬qKxqK1.Kpq
24 23 reximi qA¬pK0.KpKx¬qKxqK1.KqApq
25 24 reximi pAqA¬pK0.KpKx¬qKxqK1.KpAqApq
26 21 25 sylbir pA¬pK0.KpKxqA¬qKxqK1.KpAqApq
27 20 26 syl6 KHLxBaseK0.K<Kxx<K1.KpAqApq
28 27 rexlimdva KHLxBaseK0.K<Kxx<K1.KpAqApq
29 6 28 mpd KHLpAqApq